CONV3TO-PC/20666 Ver. 1.0

USER MANUAL

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

IMPORTANT NOTICE

CONV3TOPC and CONV3TO28¢¢ are distributed on an 'AS IS'" basis only and without
warranty. EMSI makes no express or implied warranty of any kind with regard to
these programs including, but not 1limited to, the implied warranties of
merchantability and fitness for a particular purpose. Neither EMSI nor any
authorized EMSI dealer shall have liability or responsibility to any person or
entity with respect to any liability, loss, or damage caused or alleged to be
caused by CONV3TOPC or CONV3TO20¢¢, including, but mnot limited to, any
interruption of service, loss of ©business or anticipatory profits, or
consequential damages resulting from the use of these programs.

WARNING

Good programming practice dictates that new programs should be thoroughly
tested before being put to use. Likewise, every Mod I1I program that is
converted with CONV3TOPC or CONV3TO28@¢ should be completely re-tested. Never
assume that a converted program will perform in exactly the same manner as it
did on the Mod TIIIl just because the converted program meets the syntax
requirements of a different microcomputer. Parallel testing with contrived test
data and parallel production rums with live data should be conducted for a
period of time sufficient to ensure that results are identical. Always save the
Mod TIII versioun of converted programs and the files that they maintained in the
event that bugs are discovered in the converted programs at a later date.

CONV3TOPC and CONV3TO20¢# automate much of the work required to produce IBM PC
and Tandy 200¢@ programs which are syntactically correct. The burden of testing
converted programs rests with the user. Be sure to read Appendix D for more
information on testing.

CONV3TOPC Copyright(c)(p)1984.
CONV3TO288d Copyright(c)(p)l984.
All rights reserved.
Educational Micro Systems, Inc.

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

CONV3TOPC Ver. 2.¢
Copyright(c)1985

CONV3TOPC Ver. 2.§ replaces CONV3TOPC Ver. 1.9 and CONV3TO2Q¢@ Ver. 1.0. It
runs on any IBM PC or compatible using PC/MS-DOS and BASICA or GW-BASIC,
including the Tandy 1@@@, 120¢HD and 2¢@@. Please ignore all references to
CONV3TO20¢@ and CNV32@@@.BAS in the Ver. 1.f user manual.

Ver. 2.¢ Enhancements

1. Function keys:
Fl 1s active: ABORTS conversion in progress.
F2 through Fl4 (or Fl6) are inactive,

2. USING statement: M3-BASIC's "7'" and "['" symbols are automatically replaced
with GW-BASIC's "\" and """ symbols.

3. FIELD statement: Each occurrence of "AS" is delimited with spaces.

4. New MENU: When a coanversion run is completed or terminated by you via the
Fl key, Ver. 2.fp presents a menu from which you may choose to: Re-run
CNV3TOPC.BAS, Exit to BASIC, Exit to PC/MS-DOS, or load the converted program
for manual revisions.

5. Seven additional keywords are flagged: INPUT@, KILL, RUN, LOAD, LOF(),
FIELD and USING.

6. Reports: Each page is numbered and contains a descriptive heading. If you
select menu optioms D, E, or F requesting printed output, CNV3TOPC.BAS will

prompt you to supply information about how your printer is configured. Your
responses depend on printer model, pitch, lines per inch and paper length
settings.

1. Characters per line (default = 8¢)?

If your printer is set for 1§ pitch and limited to narrow 8% inch paper you
can most likely just press <ENTER>. Refer to your printer manual for the
appropriate reponse. For example, if you have an OKIDATA ML92 set for 12
pitch, type 96 and press <ENTERD.

2. Lines per page (default = 66)7

If your printer is set to print 6 lines per inch on standard 1l inch paper
just press <ENTER>, otherwise type the appropriate reponse. For example, if
your printer is set for 8 lines per inch and 1l inch paper, type 88 and press
<ENTER>.

Note that you may permanently change the displayed default values if they do
not agree with the way you typically configure your printer - load
CNV3TOPC.BAS and edit lines 6521% and 65228 per your requirements. Further, if
you always use the displayed default values, you may eliminate the need to
respond to above prompts by activating line 65225.

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 & 201-879-5982

TABLE OF CONTENTS

Chapter 1 INTRODUCTION
Y-S R o - o] 1.1
Trademark Credits....oiiiiiiiiiee et rne s esaseannnn. 1.1
User Manual Terminology.....oeeeeuueetmnnnnnneeneneeennnnnnn. 1.1
O € o o 1.1

Chapter 2 PROGRAM OPERATION

Preparing CV3 Master CopieS.«ueseeuenr e e nesenenenannnnnn.. 2.1

Preparing LINK3PC Master CoOpiesS.:.eeeeueurneenemeenn e, 2.2

Preparing the Mod III program for conversion................. 2.3

Running CV3 - CONV3TOPC and CONVI3TO200@......coveuunrunnn.. 2.4
Chapter 3 CV3 ERROR MESSAGE S .t i vitee e eteeetceeeseme e 3.1
Appendix A SUGGESTIONS FOR BETTER CONVERSIONS. ...t uernunennnnn. A.l
Appendix B M3-BASIC PEEKS and POKES...uu'unnennnneesenneennnnnn. B.1
Appendix C CMD" " REPLACEMENTS.« uuuunnnaeeee e, c.1
Appendix D OTHER CONVERSION CONSIDERATIONS . .. v veveeencoencennnn. D.1
Appendix E M3-BASIC/GW~BASIC ERROR CODE XREF...uvvueeenennnnnnnn, E.1
Appendix F M3-BASIC CHR$() AND STRINGS(,) CODES...uueuserevennn... F.1
Appendix G MISCELLANEOUS GW-BASIC SUBROUTINES.......v.... e reeea G.1
Appendix H LINK3PC Program/File Transfer.....eeeeeeweeennnn. R 0 |
Appendix I IN CASE OF TROUBLE. ittt ivtirveeeronensonneeonnnannnnnss I.1

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Chapter 1 INTRODUCTION
1.1 REGISTRATION.

Please fill out and mail the software registration card as soon as possible
since this 1is our only way of knowing you are a licensed CONV3TOPC or
CONV3TO20@@ user. We will endeavor to notify licensed users about enhancements
and new releases.

1.2 Trademark Credits

Radio Shack, Tandy 2@@¢@, TRS-8@, TRS-8¢ Mod III, and TRSDOS 1.3 are trademarks
of Radio Shack, a division of Tandy Corporation. MS-DOS and GW-BASIC are
trademarks of MICROSOFT Corporation. IBM PC is a trademark of Interuational
Business Machines Corporation.

1.3 User Manual Terminology

This manual 1is provided for both CONV3TOPC and CONV3TO2¢@@¢ licensed users.
Because the majority of information presented herein applies to both software
packages and machines, the following terms and definitions will be used for
convenience of understanding:

Cv3 refers to both CONV3TOPC and CONV3TO20@#@. For example,
"Place the CV3 diskette in drive B" means the same as:
"Place the CONV3TOPC diskette in drive B" and
"Place the CONV3TO2@@@ diskette in drive B".

PC refers to both the IBM PC and Tandy 20¢@.

MS~DOS refers to both PC-DOS and MS-DOS.

GW-BASIC refers to BASIC as implemented on the PC.

M3-BASIC refers to BASIC as implemented on the TRS-8§ Model III.
LINK3PC the generic name used to refer to the file transfer utility

program enclosed with this package on a separate diskette.
1.4 CV3 Overview

Thousands of TRS-8¢ Mod III computers were sold before 1984, and thousands of
programs have been bought by Mod III users. With the Mod III's discontinuation
and the growing popularity of new 16-Bit machines like the IBM PC and its
compatibles, many Mod III users have considered upgrading to the new machines
but resisted doing so because Mod III software is not directly compatible.
EMSI's two powerful utilities, CONV3TOPC and CONV3TO20@¢, solve this problem by
providing a quick, easy, and accurate means to convert your Mod III software to
the IBM PC compatibles.

Without the assistance provided by these packages you would have to convert
your programs through a long and tedious process. For instance, GW-BASIC
keywords require space delimiters while M3~BASIC does not:

M3-BASIC GW-BASIC
1§ PRINTAS 1§ PRINT A$
2() FORI=1TO2@STEP2 2¢ FOR_I=1 TO 2§ STEP 2
3¢ IFA=BTHEN4(Q 3¢ IF_A=B_THEN 4@p
4@ NEXTI 4@ NEXT I
-1.1-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 & 201-879-5982

The other numerous changes performed for you include: replacement of the PRINT@
instruction with LOCATE and PRINT; adjustment of TAB addresses, and replacement
of exponential symbols.

The step by step procedure for converting a M3-BASIC program to GW-BASIC is
explained later in this manual. 1In general, the procedure requires four steps:

1. Prepare the Mod III program.
A. Save program in ASCII format.
B. Validate ASCII version.
2. Transfer ASCII version to MS-DOS diskette on Mod III.
A. Format MS-DOS diskette.
B. Copy Mod III ASCII version to MS-DOS diskette.
Run conversion program on PC.
4. Manual revisicn.
A. Edit flagged lines.
B. Merge subroutines as required.

(W8]
.

CONV3TOPC and CONV3TO2@¢@ were written to save you time by automating most of
the conversion and flagging program lines which need manual attention. Flagged
conditions and their GW-BASIC altermnatives are explained in this user manual.

EMSI has tried to provide a comprehensive, error free user manual and bug free

software. If you find something you believe we overlooked, we would sincerely
appreclate your suggestlons.

-1.2-
Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 o 201'—879—_598’,’2}:’

Chapter 2 PROGRAM OPERATIOR
2.1 Preparing CV3 Master Copies

CV3 is written in GW-BASIC and is provided on a single sided, 4@ track diskette
readable by both the IBM PC and the Tandy 20#¢f. Note, however, that the
diskette does not contain MS-DOS (it is not an MS-DOS system diskette). Since
it is not good practice to put a purchased diskette into daily use, we suggest
that you create personal "working copies" to aid your use of the program while
the original is stored away in a safe place.

The following assumes you have a PC with two floppy disk drives. Those with
only one floppy drive or a hard drive should review their MS-DOS manuals for
slight variations in the procedure.

If you do not have a hard drive, we suggest that you place your working copies
of CV3 on MS-DOS system diskettes. Use the FORMAT command to prepare a few
blank diskettes, use DISKCOPY or COMPDUPE to create duplicate MS-DOS masters,
and use COPY to transfer the contents of your CV3 diskette to your working

copy.

Power up your PC, place an MS-DOS master diskette in drive A, and press the
RESET button or multi-key equivalent. Be sure there is a write protect label on
the MS-DOS master to avoid accidents. Answer the date and time prompts and
then:

1. Place a blank diskette in drive B.

2. Execute the FORMAT command. Type FORMAT B: and press <ENTER>.
3. Execute the DISKCOPY command. Type DISKCOPY A: B: and press <ENTER>.
4. Remove your original MS-DOS master from drive A and store away.
5. Remove your MS-DOS copy from drive B and place it in drive A.
6. Place your CV3 diskette in drive B.
7. Execute the COPY command.
Type: COPY B:CNV3TOPC.BAS A: and press <ENTER> (for IBM PC users), or
Type: COPY B:CNV32P@@.BAS A: and press <ENTER> (for Tandy 200§ users).
Please note that the actual program names begin with CNV not CONV.
8. Optionally, execute the COPY command: COPY B:*.ASC A: A few short
GW-BASIC subroutines, which may be required by your converted programs,
are stored on the CV3 diskette in ASCII format for easy MERGEing (see
Appendix G).
When step 7 or 8 is complete, you will have your first working copy. You may
want to place a write protect label on this diskette, call it your ''master

working copy,'" and only use it for making additional working copies for daily
use. This should eliminate your need to handle the original CV3 diskette again.

-2.1-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 o 201-879-5982

2.2 Preparing LINK3PC Master Copies

As mentioned in the CV3 Overview, this package includes a separate diskette
containing a program to transfer your Mod III programs and files to a PC. Refer
to Appendix H for details about the use of this program.

~-2.2-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 ° 20]-879-5982 e

2.3 Preparing“the Mod III program for conversion

Prior to running the CV3 conversion program, each Mod III program must (1) be
saved in ASCII form, and (2) be transferred to an MS-DOS 1.P diskette.

SAVING THE PROGRAM IN ASCII: Power up a Mod IIT with TRSDOS 1.3 in drive @ and
press reset. Answer the date and time prompts. Insert the diskette containling
the program to be converted in drive 1. Type BASIC and press <ENTER>. Answer
the memory size and number of files questions by pressing <ENTER>. Use the LOAD
command to load the program into memory.

Type: LOAD'"NAME:1" and press <ENTERD.
Where NAME is program's filespec and 1 is the
number of the drive in which it is located.

When the screen displays READY, the program has loaded and you are ready to
save it 1in ASCII form by using the SAVE command with the "A" option (we
strongly suggest reading Appendix A first).

Type: SAVE'"NAME:#'" A and press <ENTERD.

Where NAME is the new filespec you want to assign to the
ASCII version of the program and # is the number of the
drive where you want the ASCII version to be recorded.

We suggest that you specify a file name for the ASCII version different from
the compressed version. For example, if the original Mod III program NAME was
"MOD3PROG'" you may want to name the ASCII version ""MOD3PROG/ASC".

After successfully saving an ASCII version of the Mod III program on disk, you
are ready to transfer it to an MS-DOS 1.p formatted diskette for easy
transition to your PC.

TRANSFERRING THE ASCII VERSION TO AN MS-DOS DISKETTE: Please refer to Appendix
H.

-2.3~

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 ® 201-879-5982

2.4 Running CV3 - CONV3TOPC and CONV3TO2§§9

Before running the conversion be sure you have made a working copy of the CV3
program, prepared a TRSDOS 1.3 ASCII version of the Mod III program, used the
LINK3PC file transfer program to copy the TRSDOS 1.3 ASCII version to an
MS-DOS diskette, and reviewed Appendices A and D.

Power up your PC, insert the MS-DOS System master containing your version of
CV3 in drive A, and press the RESET button or multi-key equivaleunt. Answer the
date and time prompts as requested. Type BASIC and press <ENTER>. Load and run
Ccv3.
Type: RUN"A:CNV3TOPC.BAS" and press <ENTER>. (for IBM PC users), or
Type: RUN"A:CNV32f#P.BAS" and press <ENTER>. (for Tandy 2089 users).
Please note: the actual program names begin with CNV not CONV.

1f you have a printer and you plan to select options D, E, or F, then make
sure the printer is on and the paper 1is aligned so that the perf is just above
the print head.

If you plan to select option I (SAVE converted PC version on disk), then you
must decide which drive will receive the GW-BASIC program. Place a formatted

diskette in that drive.

Menu Selections

There are 12 menu selections from which you may choose any combination. To
select aun option simply type the corresponding letter. Type the letters for
all selections, in any order, and then press <ENTER>. 1t 1is not necessary to

separate menu selections with commas.

A, Display errors on SCREEN. Primarily for users without line printers,
this option displays all error conditions on the screen. If you do not select
option D we suggest that you select option G to pause executlon so you can
record errors before they scroll off the screen.

B. Display Mod III program lines on SCREEN. Primarily. for users without
line printers, this option will display each Mod III program line to be
converted. Used in conjunction with A and C, it facilitates manual corrections
of unresolved conditions.

C. Display PC program limes on SCREEN. Primarily for those without line
printers, this option will display each converted GW-BASIC program line. Used
in conjunction with A and B, it facilitatss manual corrections of unresolved
conditions.

D. List errors on PRINTER. All error conditions are listed on the printer
if this option is selected. It is suggested for those with printers.

E. iist Mod III program lines on PRINTER. Each Mod II1 program line is
listed on the printer with this optioan. It is especially useful if you do not
already have a printed listing of the Mod III program. When used 1n
conjunction with options D and F, it assists with manual corrections of

unresolved conditions.
...2‘[‘_.

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

F. List PC :program lines on PRINTER. This option lists each converted
GW-BASIC program lime on the printer. If you have a printer this option is
suggested. When used in conjunction with options D and E, it facilitates
manual corrections of unresolved conditions.

G. PAUSE after each error condition. Primarily for users without line
printers, this option pauses program execution after the discovery of each
error to allow for manual recording. G is not suggested for those with line

printers because of the extra time involved in its use.

H. SOUND BELL after each error conditiom. Mainly for those without line
printers, this option beeps the PC bell for a few seconds each time an error
condition 1s encountered. H is not suggested for those with line
printers.

I. SAVE converted PC version on disk. The converted program is stored on
disk with this option. It must be selected to save a disk version of the
converted program, although flagged error conditions still must be resolved
before you attempt to RUN the program. You will be prompted to enter the

filespec (ie. drive and name) for the converted GW-BASIC program. The filespec
must be different from that which you assigned to the Mod III program.

J. Insert 1line feed after each '":" This option inserts a down feed
character and indent spaces after each colon in lines containing more than one
instruction (refer to note concerning use at top of next page).

With option J 200 CLS:FORI=1TO3:PRINT"Option J":NEXT

would become 200 CLS:
FOR I=1 TO 3:
PRINT"Option J':
NEXT

CV3 attempts to make all other GW-BASIC conversions before executing this
option. Down feeds are inserted before spaces, and if the maximum number of
characters per line, 249, is met or exceeded before execution is complete,
some of the instructions will not be staggered or indented (see Appendix A).

K. Insert line feed before IF, THEN, ELSE. This option inserts a down feed
character and indent spaces before each IF, THEN, or ELSE statement that is
found (refer to note concerning use at top of next page).

With option K 3¢¢ CLS:IFA=BTHENPRINT"Option K"ELSEGOTOS50¢
would become 309 CLS:
IF A=B

THEN PRINT"Option K"
ELSE GOTO 50¢

CV3 inserts down feeds while it is making other GW-BASIC conversions and
inserts indent spaces after all other conversions have been made. If the
maximum number of characters per 1line, 249, is met or exceeded before
execution is complete, some of the IF, THEN, or ELSE statements may not be
staggered or indented (see Appendix A).

-2.5-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Notes concerning use of options J and K: Used together, options J, K, and F
produce a GW-BASIC program listing that is very easy to read. However, we do
not recommend that option J or K be selected with option I. Options J and K
slow the conversion, increase the size of the resultant GW-BASIC program, and
cause GW-BASIC to insert a hard line feed (ASCII 13) after each downfeed,
which may cause problems when executing the converted program. If you desire a
more legible listing it is better to run the conversion once with J and K
(without 1) and once with I (without J or K).

L. Remove BEM's and comments from PC version. CV3 classifies two types of
remark statements. One type 1s the REM statement where the word REM or the
shorthand "'" is the first and only statement on the line. For example:

199 REM*** This is a REM statement **%*

The second type is the REM comment, a REM or "'" which is not the first
statement on the line. For example:
20¢ AV=0H+00~AL : REM*** This is a REM comment #**%
Only the text is removed from REM statements. The line number and keyword
remain in case the line is referenced with a GOTO or GOSUB. The keyword and
text are removed from REM couments. For example:
line 1¢¢ becomes 1409 !
and line 20@ becomes 20@ AV=0H+00-AL
You will be asked for the line number at which ''removal" should begin. o

After choosing program options and pressing <ENTER>, you will be given a
review of your selections and an opportunity to revise them.

When you are satisfied with the options selected, you will be prompted to
enter the filespec (drive designation and name) for the Mod IIL program to be
converted. Type in the proper filespec and press <ENTER>. If your respouse is
syntactically incorrect or the requested program is not found on the drive
that vou specified, you will be asked to enter the filespec again.

1f you selected option I, you will be prompted to enter the filespec for the
disk version of the converted GW-BASIC program (see option I). If the filespec

you choose is that of an existing file, you will be asked for verification.

Finally, you will be reminded to ready your printer, and the conversion will
begin.

~2.6-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 20]-879—‘5982

Chapter 3 CV3 ERROR MESSAGES
ERROR 1 and 2 reserved.

ERROR 3 - PEEK/POKE statement encountered. Left unchanged: Refer to Appendix B
for details and assistance.

"ERROR 4 - Not supported: The Mod III screen supported low res graphics.
Programs could access any one of 6144 screen pixels arranged in a rectangular
grid consisting of 128 columns numbered $-127 from left to right, and 48 rows
numbered §-47 from top to bottom. Pixels could be turnmed on (lit up) with the
SET(C,R) command, turned off (darkened) with the RESET(C,R) command, and tested
to see 1f they were on or off with the POINT(C,R) command.

POINT is nearly iwpossible to replace, but the PRINT@ instruction is an

alternative for SET and RESET under certain coanditions. TFor example, SET was
often used to draw borders around the Mod III screen. You may find something
like this: 209 FOR X=p TO 127:SET(X,H):SET(X,47):NEXT

21¢ FOR Y= TO 47:SET(P,Y):SET(1,Y):SET(126,Y):SET(127,Y):NEXT
For an attractive GW-BASIC substitute, see Appendix G, R6517@.ASC.

ERROR 5 - Mod 3 PRINT@ syntax error. Comma missing after address: This error is

very unlikely because it would have caused a M3-BASIC syntax error. Before
replacing PRINT@ addresses with LOCATE ROW,COL, etc., CV3 looks for the address
terminator, a comma. If no comma is found, the address is not modified. Read

the description for ERROR 6 to determine how to manually edit this instruction.

ERROR 6 - Mod 3 PRINT@ address contains variable(s): Most likely, this is a
warning that you will be required to MERGE R65@30.ASC with your GW-BASIC
program after the conversion. Your program may contain two types of PRINTGE
statements: "hard'" PRINT@s with a constant address (PRINT@450," Something"), and
“"soft" PRINT@s with a variable address determined at execution time
(PRINT@XY, ' Something"). Conversion of both types 1s automatic unless the
process would create a GW-BASIC line that is too long.
PRINT@450, " Something"

would be changed to: LOCATE 8,3:PRINT"Something"

If the conversion of a 'hard" PRINT@ is bypassed, split the line and
make the conversion manually. For PRINT@A, LOCATE coordinates R(ow) and
Clolumn) are determined as follows: R=INT(A/64)+] and C=A-64*INT(A/64)+1.
"soft'" PRINT@s usually does not cause a problem:
PRINT@XY,''Something"
would be changed to: ZOGZ=XY:GOSUB 65@3@: PRINT"' Something"

If the conversion of a "soft" PRINT@ is bypassed, split the line and
convert as above. Remove PRINT@ and replace with:

Z0G%=(Address) :GOSUB 65@3@:PRINT where (Address) is the PRINT@(Address).
If the variable address contains a comma, the line will be converted
incorrectly and require manual editing. The M3-BASIC line:
PRINT@X(Y,3),"X(Y,3) ~ contains a comma"
will convert erroneously as follows:
Z0G%=X(Y:GOSUB 65@3@:PRINT 3),"X(Y,3) - contains a comma"
Notice that the embedded comma caused CV3 to spl-it the address. Manually edit
to produce the correct result:
Z0G%=X(Y,3) :GOSUB 65@3@:PRINT"X(Y,3) - contains a comma"

Automatic conversion of

-3.1-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Note that if your program contains one or more '"soft' PRINT@ instructions, you
will need to MERGE (or enter from keyboard) the program R65@830.ASC (see
Appendix G).

ERROR 7 ~ Missing IF or THEN statement: M3-BASIC sometimes permitted THEN to be
omitted from IF/THEN statements, but GW-BASIC requires a THEN with each IF.
Edit the line and insert THEN in the proper place. This error will also be
displayed in the unlikely situation of a missing IF.

ERROR 8 - CMD" " sgtatement encountered: M3-BASIC supported a series of CMD"?"
statements. Although GW-BASIC does not support CMD" '" commands, a few may be
replaced by alternate methods (see Appendix C).

ERROR 9 - Line TOO LONG: A program line being converted exceeded or would have

exceeded maximum line length. Some portion of the line may not have been
converted and/or some portion may have been truncated. If option 1 was in
effect the line was written to disk as wusual. Review the contents of the

M3~-BASIC and GW-BASIC lines to see whether manual editing is required.

ERROR 1 - TIMES statement encountered: In M3-BASIC, TIMES returns both the

date and the time as a 17 byte string - '"MM/DD/YY HH:MM:SS'". GW-BASIC has
separate instructions for this purpose: DATES returns the 1§ byte string
"MM-DD-19YY" and TIMES returns the eight byte string "HH:MM:SS". The following

lines show a few M3-BASIC 1instructions on the left and their GW-BASIC
equivalent on the right:

M3-BASIC GW-BASIC (close) equivalent
25 AS$=TIMES 25 AS=DATES+'" "+TIMES
3¢ BS=LEFTS(TIMES,S8) 3¢ BS=DATES
49 CS=RIGHTS(TIMES,S8) 49 CS=TIMES
S@ PRINT TIMES 5¢ PRINT DATES'" "TIMES

The exact GW-BASIC equivalent of the M3-BASIC statement LEFTS$(TIMES,8) is:
LEFTS$ (DATES, 2)+"/"+MIDS(DATES ,4,2)+'"/"+RIGHTS (DATES ,2) .

Conversion becomes cumbersome 1if LEFT$(DATES,8) occurs several times throughout
your program. You may want to define the exact GW-BASIC equivalent as a string
function at the beginning of your program. For example:

DEF FNDTT$=LEFTS(DATES,2)+"/"+MID$ (DATES,4,2)+"/"+RIGHTS (DATES, 2)
Then simply substitute FNDTT$ for each occurrance of LEFTS$(DATES,8) or
MIDS (DATES,1,8).

ERROR 11 - CINT() statement encountered: M3-BASIC truncates decimals, while
GW-BASIC rounds decimals. For example, CINT(6.5) yields 6 with M3-BASIC but 7
with GW-BASIC. Sowe visual analysis of the program is required to determine if
this will cause a problem. See if INT() can be used instead.

EBROR 12 - CLEAR statement encountered: Both M3-BASIC and GW-BASIC use this
instruction to null strings, zero variables, and close opeu files. In M3-BASIC,
if CLEAR 1s followed by a number it is also allocating string space. Since
GW~-BASIC allocates string space dynamically, any number or variable following
the CLEAR instruction must be removed.

-3.2-~

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982 .

ERROR 13 - OUT_ statement encountered: Both M3-BASIC and GW-BASIC use OUT to
send a byte to a port. However, Mod III and PC port designations differ. Refer
to the Mod II1 and PC technical manuals to determine the required revision.

ERROR 14 - INP() statement encountered: Both M3-BASIC and GW-BASIC use INP() to
retrieve a byte from a port. However, Mod III and PC port designations differ.
Refer to the Mod III and PC technical manuals to determine the required
revision.

ERROR 15 - ERR statement encountered: If an ON ERROR GOTO is active in a BASIC
program, the interpreter will branch to the specified line number rather than
abort program execution. M3-BASIC programs can test the value of ERR or ERR/2+1
in order to check the error type which was encountered. Since use of ON ERROR
GOTO and ERR are common error trapping techniques, you may find, for example:

30¢@¢ IF (ERR/2+1)= ## THEN
30¢% IF ERR = ## THEN

Note that because the Mod IIT assigns a false error code to ERR, you must
divide by 2 and add 1 to determine the true error code. Both of the following
M3-BASIC statements test whether the true error code is 13:

3¢¢¢ IF (ERR/2+1) = 13 THEN
3004 IF ERR = 24 THEN

The GW-BASIC interpreter does assign the true error code to ERR. A GW-BASIC
line to test error code 13 would be:

3099 IF ERR = 13 THEN
If the M3-BASIC line is something like:
30¢¢ IF (ERR/2+1) = ## THEN

just replace the "ERR/2+1" with "ERR" because the line is already testing for
the true error code. If the M3-BASIC line is something like this:

3¢¢® IF ERR = X THEN
replace 'X' with the true error code which is X/2+1.

Finally, some true error codes returned by M3-BASIC and GW-BASIC are not the
same (see Appendix E for details).

ERROR 16 - Mod 3 TAB() syntax error. Right paren. missing: This error is
unlikely because it would have caused a M3-BASIC syntax error. FEdit the line,
insert the required ")" and the equivalent GW-BASIC TAB location.

To determine the equivalent GW-BASIC TAB location, first calculate the
modulo 128 equivalent of the M3-BASIC TAB address shown. Given an address of X,
the actual address equals X-(INT(X/128)%128). This will produce a value between
§ and 127.

-3.3-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

For TAB's preceded by LPRINT, or for TAB's preceded by PRINT with
modulo addresses between § and 63, just add 1 to get the GW-BASIC equivalent.
For instance:

M3-BASIC GW-BASIC equivalent

PRINT TAB(45)"... PRINT TAB(46)"...

PRINT TAB(128)"... PRINT TAB(1)"...

PRINT TAB(15¢)"... PRINT TAB(23)"...

LPRINT TAB(98)"... LPRINT TAB(91)"...
For TAB's preceded by PRINT with addresses between 64 and 127, see ERROR 19.
ERROR 17 - Mod 3 TAB () address contains variables: The conversion program
does not attempt to convert TAB addresses when they contain variables. A TAB

statement such as TAB(X) or TAB(R+15) will be left unchanged. Review program
logic, determine what value or range of values the TAB modulo 128 address would
be, and refer to ERROR 16 and 19 for assistance.

ERROR 18 - Mod 3 TAB syntax error, TAB() not preceded by PRINT or LPRINT: This
error is unlikely because it would have caused a M3-BASIC syntax error. Edit
the line, insert the required PRINT or LPRINT and refer to ERROR 16, 17, and 19
for assistance.

ERROR 19 - PRINT TAB() encountered with address between 64 and 127 inclusive:
Fortunately, most programmers do not use TAB's between 64 and 127 so you most
likely will not encounter this error flag. Given that the Mod III screen is 64
characters wide and TAB addresses are moduloc 128, if the cursor is in position
f on a line, then a PRINT TAB() statement can move the cursor to any position
on the current line (P-63) as well as the next line (64-127). The sample
M3-BASIC lines which follow on the left are restated in equivalent M3-BASIC
lines on the right.

5¢@% PRINTTAB(64)"ABC" 5@@@ PRINT:PRINTTAB()"ABC"
5199 PRINTTAB(78)'ABC" 5199 PRINT:PRINTTAB(14)"ABC"
In general, 1if the cursor is between § and 63, a PRINT TAB(X) where X is
between 64 and 127 may be avoided by inserting a PRINT before the TAB and
subtracting 64 from the existing TAB address. Hence, if you find a M3-BASIC
line such as:
5¢9@ PRINTTAB(85)'"ABC"
change it to the M3-BASIC equivalent:
SP@¢ PRINT:PRINTTAB(21)"ABC"
and then add 1 to produce the GW-BASIC line:
S@@@ PRINT:PRINT TAB(22)"ABC".

Suppose CV3 ERROR 19 is displayed for lines 408§ and 4829 in the following
M3-BASIC program:

4300 CLS:PRINTTAB(85)"ABC":

49209 PRINTTAB(94)'DEF"
How do you convert these lines? Change line 480¢ to:

4GPP CLS:PRINT:PRINT TAB(22)"ABC'";
In changing the TAB address of 4¢20 you should subtract 64 from 94 and add 1

(i.e. subtract 63). Do not insert an extra PRINT in 4920 because that step was
accounted for in line 4@¢0.

=3.4-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 20]—879-5982 :

~The GW-BASIC equivalent of lines 400 and 4020 is:

49@3 CLS:PRINT:PRINT TAB(22)"ABC";
4$29 PRINT TAB(31)"DEF"

If in testing your converted program you find that the display in GW-BASIC
differs from M3-BASIC, it may be because portions of the displayed lines which
would automatically wrap around on the Mod TII's 64 column display continue to
print on the same line for up to 16 additional spaces on the PC's 8¢ column
display. In addition, GW-BASIC checks to see how much space 1s available before
displaying any text on a line. If the text length exceeds the remaining space,
the GW-BASIC cursor skips to the first position of the next line before
displaying any of the text.

ERROR 2§ - USR or DEF USR statement encountered: The DEF USR statement stores
the starting address of a machine language subroutine which will subsequently
be called by a related USR statement. The potential problem here 1s not with
syntax, but with the address being assigned or called.

Mod III ROM routines are not available to the PC. If the assignment or
call is to one of these routines, the only solution is to write a comparable PC
machine language routine, store it in protected memory, and change the address
assigned to the DEF USR statement.

If the assignment or call is to a RAM routine loaded or POKEd into
memory by a user program, the command syntax may not need to be changed.
Nevertheless, the machine language program which is poked into upper wmemory
must be converted. Refer to Appendix B, M3-BASIC PEEKs and POKEs, page B.4.

ERROR 21 - NEXT encountered in conditional statement: M3-BASIC, wunlike
GW-BASIC, allowed statements such as:
6f@@ IF A=B THEN NEXT
and 6f¢@ IF A=B THEN PRINT'"A=B'':NEXT ELSE NEXT

Add a separate NEXT line at the bottom of the FOR/NEXT loop (if not already
there) and replace the conditional NEXT with a GOTO. TFor instance:

60@@ IF A=B THEN 6200 6@@¢ IF A=B THEN PRINT"A=B":GOTO 6200
: (or) :
620¢ NEXT 6200 NEXT

Note that ERROR 21 may be displayed if the NEXT found in a conditional
statement is actually part of a conditional FOR/NEXT pair. For example:

6@0@@ IF A=B THEN FOR I=1 TO 3:
PRINT"Ignore this false ERROR 21 flag'':NEXT

ERROR 22 ~ Cassette input/output statement encountered: INPUT#-? or PRINT#-?
caused this flag. These M3-BASIC instructions are used to read data from a
cassette and to store data on a cassette, respectively. Because cassette
processing 1is not supported by GW-BASIC, try to replace cassette file
Input/Output with sequential disk file Input/Output. Review the INPUT#, PRINT#,
OPEN, CLOSE, and EOF() instructions in GW-BASIC.

~3.5-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

To transfer Mod IIl cassette files to your PC, write a short M3-BASIC program
to copy them to a TRSDOS 1.3 diskette, and use LINK3PC to transfer the disk
files to an MS-DOS diskette.

ERROR 23 — DATA statement encountered at the end of a program lime: If a DATA
statement 1is not the first statement on a line and 1if the data items are
alphanumeric and not delimited with quotes, then embedded spaces were removed.
Review the M3-BASIC and GW-BASIC program lines and insert spaces as required.

ERROR 24 and 25 reserved.

ERROR 26 - CHRS$() or STRINGS(,) statement encountered: Both M3-BASIC and
GW-BASIC use these statements in conjunction with the PRINT statement as an
alternate method of displaying numbers, letters and symbols on the screen and
to toggle certain video and system functions. For example, PRINT CHR$(65) would
display an "A" on both the Mod III or PC screen. Thus, little change is
necessary to CHRS(X) which display characters. However, to move the cursor to
the upper left cormer of the screen, a video function, M3-BASIC uses PRINT
CHR$(28) while the GW-BASIC equivalent 1is LOCATE 1,1 (see Appendix F for more
details).

£R%0R 177 OPER statement encountered: OPEN statements are flagged to aid you in checking
filespec syntax and to alert you to differences in the default values for
random files.

Filespecs: When OPENing files in either M3-BASIC or GW-BASIC you may
specify a file extension and source drive. In M3-BASIC the extension 1s
preceded by a slash, and the source drive is a number and appears to the right.
For example, you might find a line like this:

5009 OPEN "I",1,""ROOTNAME/EXT:#"
where EXT is the extension and # is a number from § to 3.

In GW-BASIC the extension 1s preceded with a period, and the source
drive is a letter which appears to the left. Under GW-BASIC, the above OPEN
statement must be changed to:

500 OPEN "I',1,"L:ROOTNAME.EXT"
where EXT 1is preceded by a period and "L'" is the letter A, B, or C.

Both BASICs allow use of string variables to designate filespec. If you find a
line like this:

4990 OPEN "1I'',1,A$
you must search elsewhere 1in your program and locate the place(s) where the
filespec is assigned to AS. Look for a line containing a command like:
AS="ROOTNAME /EXT:#'" or AS$="ROOTNAME'+'"/"+"EXT'"+":#"
and change to: AS="L:ROOTNAME .EXT" or AS$="L:"+"ROOTNAME'+"."+"EXT"
Random buffer size - default value: Unless specified, in M3-BASIC the

buffer size of a random file defaults to 256 bytes. In GW-BASIC the default
size 1s 128 bytes. The M3-BASIC OPEN statement:

5300 OPEN “R",1,"FILE/EXT"
needs to be changed to:
5009 OPEN "R'",1,"FILE.EXT'", 256

For more complete details about the differeuces between M3-BASIC and GW-BASIC
OPEN statements, please refer to your respective BASIC manuals. Also, be sure
to review the LOF(buffer) statement.

~3.6- s

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 o 20]-879-5982,, S

ERROR 28 - RND() statement encountered: There are a few differences between
the RND commands’ of M3-BASIC and GW-BASIC.
In M3-BASIC: RND(®) returns a decimal number between @ and 1, and

RND(X) returns an integer between 1 and X inclusive,

’ ~where X is a positive integer less than 32768.

In GW-BASIC: RND returns a decimal number between § and 1, and

RND(p) repeats the last random number presented.
The following lines show RND instructions as they might appear in M3-BASIC
programs and their GW-BASIC equivalents:

M3-BASIC GW-BASIC equivalent
30 Z=RND(10) 3¢ Z=INT(RND*1¢)+]
4@ PRINT RND(5)-1 40 PRINT INT(RND*5)
5¢ K=RND(§) 50 K=RND
ERROR 29 - RANDOM statement encountered: Both M3-BASIC and GW-BASIC have
statements to reseed the random number generator. M3-BASIC uses the RANDOM

statement and requires no parameters. GW-BASIC uses RANDOMIZE, which may be
followed by an integer value in the range of -32768 to 32767. If the optional
value is omitted, when RANDOMIZE is executed the program will pause and request
it. To avoid this nuisance but still guarantee a different sequence of pseudo
random numbers each time the program is run, we suggest you MERGE the
R6510# .ASC subroutine. Insert a GOSUB to this routine early in your program and
replace each occurrence of: RANDOM
with: RANDOMIZE FNSEED

R6510@ .ASC defines SEED as a function of TIMES and returns a number in the
required integer range (see Appendix G).

ERROR 3§ - USING statement encountered: This statement is used in conjunction
with PRINT and LPRINT to format displayed and printed data. The general syntax
for the USING statement is as follows:
(L)PRINT USING format string;expression(s)
where format string may be a string literal or string variable.
Special characters used in the format string produce different results
(see LPRINT USING and PRINT USING in your BASIC manuals for details). With two
exceptions, the special characters used by both BASIC's are identical and no
manual change will be required. The two exceptions are described below:
1. String field delineation: M3-BASIC uses two percent signs
and GW-BASIC uses two backslashes.
2. Exponential notation: M3-BASIC uses four up-arrows (shown as [[[[)
and GW-BASIC uses four carets (~""").
Note that CV3 automatically corrects these two exceptions if they occur in a
USING statement where the format string is a string literal. For example, the
M3-BASIC lines on the left will automatically be revised to the GW-BASIC lines
on the right:

M3-BASIC GW-BASIC
1¢ PRINT USING'"% 7' AS 1¢ PRINT USING'\ \'"AS
2¢ PRINT USING"##.##[[[[";X 20 PRINT USING'##.##" """ X

However, CV3 does not make changes when the format string is a string variable.
If you find something like this:

1¢@ PRINT USING F$,A$S or 2@ PRINT USING ES$,X
you must search elsewhere in your program, locate the place(s) where the format
string is initialized and revise as above.

-3.7-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 20]-879-5982

ERROR 31 - KILL, LOAD, or RUN statement encountered: These three statements are
flagged because they require or optionally may be followed by a filespec in the
fotm of a string literal or string variable.

If a string literal follows ome of these statements, review it and make
any necessary changes. If the filespec contains an extension, change the slash
preceding it to a period. For example:

M3-BASIC GW-BASIC
4$@ RUN'NEWPROG/BAS" 4$@ RUN'NEWPROG.BAS"
If the string literal designates a disk drive, remove the drive number and
colon, and then insert the appropriate GW-BASIC drive letter and colou in front
of the filespec. For example:
M3~BASIC GW-BASIC
5¢¢ KILL"OLDFILE:1" 5¢¢ KILL"B:OLDFILE"
Warning: If a M3-BASIC filespec does not contain a drive number, M3-BASIC first
looks for it on drive :§. If it is not located there, M3-BASIC continues to
search for it on consecutively higher numbered drives. GW-BASIC interprets the
lack of a drive specification to mean that the filespec is located on the
current system default drive (usually drive A: on floppy disk systems and drive
C: on hard disk systems). If the filespec is not on the system drive, program
operation is aborted with a '"file not found" error. You cannot assume that a
M3-BASIC filespec without a designated drive number means that the progranm
expected to find it on drive :§. Further, the drive letter you assign will
depend on your PC's hardware configuration.

If KILL, LOAD or RUN is followed by a filespec in the form of a string
variable, then you must search elsewhere in your program, locate the place(s)
where the string variable is initialized and revise accordingly as per above.

ERROR 32 - LOF() statement encountered: There is a major difference between
the LOF() commands in M3-BASIC and GW-BASIC.

The M3-BASIC LOF() statement returns the last record number in a random
file. It was very useful when reading random files sequentially or when adding
records to an existing file. TFor example:

30 REM Read file sequentially 20¢ REM Adding new records
4¢ FOR I=1 TO LOF(1l) 21¢ X=LOF(1)+1

S GET 1,I 22¢ PUT 1,X

60 <{Process Record>> 23% RETURN

73 NEXT

The GW-BASIC LOF() statement returns the total number of bytes in a
random file - rounded upward to a multiple of 128 (unless the file was created
by the MS-DOS EDLIN utility). The GW-BASIC LOF() statemeunt is ounly useful with
a random file composed of 128 or 256 byte records.

If the M3-BASIC program being converted accesses random files with 128
or 256 byte records, Jjust replace each occurrence of "“LOF(buf#)" with
"LOF(buf#)/rec.size". For example, if record size 1s 256 then line 4@ above
should be changed to:

4% FOR I=1 TO LOF(1)/256
and line 21¢ should be changed to:
219 X=LOF(1)/256+1

~3.8-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201—879~59»82

. If the M3-BASIC program accesses random files that do mnot have 128 or
256 byte records it is still possible to make use of the LOF() statement by
reformatting the data file to comply with the GW-BASIC's record size
limitations. Reformatting such a file may be accomplished by the program below.
It reads a record from the original file, expands it to 128 or 256 bytes and
writes it to a new file. Note that the sample program illustrated here contains
no error-trapping and should be used with extreme care (be sure to make a
backup copy of all files prior to use).

1¢ 'EXPANDIT.ASC - Mod III BASIC file reformat program.

12 Run on Mod IIT before transferring file to PC

15 CLEAR 5@@:DEFINT A-Z:CLS

2§ LINE INPUT"Original M3 filename, drive#, rec.size ";M3$,D1S$,F]

25 LINE INPUT"Expanded M3 filename, drive#, rec.size (128 or 256) ";PC$,D2S,F2
39 OPEN "R",1,M3$+":"+D1S F1:FIELD 1,(Fl) AS AS$

35 IF F2=256 THEN OPEN "R'",2,PCS$+'":'"+D2$ ELSE OPEN ”R",Z,PC$+”:”+D2$,F2

4@ FIELD 2,(F1) AS B$,(256+128%(F2=128)-F1) AS PD$:LSET PD$=" "

45 FOR I=1 TO LOF(1):GET 1,I:LSET B$=A$:PUT 2,I:NEXT:CLOSE :END

The advantage of restructuring the data file in this manner is that manual
revisions to the converted program are minimal - just replace each occurrence
of LOF() with LOF()/128 or LOF()/256. The disadvantage is that wasted space
is built into each data record and there is the possibility of attempting to
generate a file too large to fit on a Mod III diskette.

Other techniques may be used to avoid wasting record space such as (1) blocking
or packing several small data records into one 128 or 256 byte record, and/or
(2) creating a small one record mini file to keep track of the number of
records on a data file. Refer to your BASIC manuals for additional information.

ERROR 33 - INPUT@ statement encountered: INPUT@ is a DOS PLUS enhancement to
M3-BASIC. CV3 flags this statement but does not alter it. INPUT@ is roughly
equivalent to a combination of PRINT@ and INPUT with parameters to delimit the
number and type of characters entered by the user (refer to your DOS PLUS
manual for details). Depending on the number of times the INPUT@ statement
appears and the parameters used, you may want to substitute with LOCATE and
INPUT, or replace each one with a GOSUB to a generalized subroutine that could
be '"tailored" for each specific INPUT@ by passing the screen address and
parameters via subroutine variables. In either case, you may want to MERGE
R65@3¢.ASC with vyour program to convert the specified screen address to
GW-BASIC LOCATE coordinates. Refer to ERROR 6 and Appendix G for additional
information.

ERROR 34 - FIELD statement encountered: This is a warning error. CV3 attempts
to insert a space before and after each occurence of "AS" in a FIELD statement .
Review the flagged FIELD statement to be sure (1) that all required spaces were
inserted, and (2) that CV3 did not incorrectly segment a variable being used to
define a field's length or name.

-3.9-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Appendix A . SUGGESTIONS FOR BETTER CONVERSIONS
'''' While preparing the Mod 111 program for conversion there are a few steps you
~can take to avold problems and further reduce your manual conversion effort.

1. ‘Before saving your Mod II1 program in ASCII, remove all "invisible' line

feeds that occur in the last position of physical program lines. They are
easily found and eliminated by using EDIT and removing the last character of
any physical program line that precedes a blank line in your program listing.

2. You may want to insert REM statements to identify the ASCII version:

T REMS AR ok dodorde ook do b b Aok st s oo d sk sk o o e o e e o e e oo o s o e o o e e ok
2¢) REM* Program Name: ASCII Version *

39 REM* TRSDOS 1.3 disk format. Date saved in ASCII / *
L4 REMEHA# ks ok sk o ok s sk oo oo b e e do oo e e o e ok o o e o e o e e e b o e e e o do 0 e T oo Aoob oo o o e

3. To eliminate the possibility of any EOF handling problems when using the
LINK3PC file transfer program, vou may want to add a few dummy REM statements
to the end of your Mod TII1 program before saving it in ASCII. For example:

65500 REM * Dummy REM - Delete After Conversion *
655¢1 REM =* Dummy REM -~ Delete After Conversion *
"
4. After SAVEing the ASCII version, LOAD it under TRSDOS 1.3. If you get

any ''direct statement in file' errors, LOAD the original Mod III program,
split the offending line, and SAVE the program in ASCII again.

5. GW-BASIC space delimiters, menu options J and K, and some GW-BASIC
replacements will add several characters to the length of converted program
lines. If space is not available, some portion of a line may be improperly
converted or indented. This will require manual attention.

GW-BASIC reserves 5 spaces for line number and 1 space for the space
following the line number leaving a maximum of 249 characters for the body of
the line. To locate long lines, do a visual scan or run the following Mod III
program after saving the ASCII version:

10 CLEAR 10¢0:
15 CLS:LINE INPUT"Enter ASCII filespec ~- 'PROGNAME/ASC:#' ';F$

OPEN "I'" 1,FS$
200 IF EOF(l) THEN CLOSE:END

ELSE LINE INPUT#1,AS$:SS=LEFTS$(AS,6)

3¢ S=INSTR(S$," ")+1:L=LEN(MIDS$(AS$,S))
49 IF S=1 OR VAL(S$)=p THEN PRINT SS$' FORMAT ERROR":GOTO 20
5S¢ IF L>249 THEN PRINT S$§'" > 249 k&% TOO LONG ***%':GOTO 20
60 IF L>2¢9 THEN PRINT S$" > 2p@, May be too long'':GOTO 2
7¢ IF L>15@¢ THEN PRINT S$'" > 15f, May be too long for options J, K"
8¢ GOTO 20

6. The CV3 program ignores line § in M3-BASIC programs. If by chance any of
your programs contain a line §, simply type it back in after conversiom or
change it to another line number before saving it in ASCII.

~A.1-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Appendix B M3-BASIC PEEKs and POKEs

PEEKs and POKEs - GENERAL: The PEEK instruction returns the CHRS$ code located
in the address PEEKed and the POKE instruction stores a CHRS code in the
address POKEd. For example: X=PEEK(Y) sets X equal to the decimal equivalent
of the binary value stored at Y, and POKE Y,X stores the binary equivalent of
X in memory position Y.

The conversion program flags all PEEKs and POKEs but does not attempt to
convert them since they require detailed manual inspection.

M3-BASIC used PEEK/POKE instructions for three reasons: (1) as an alternate
method of displaying information on the screen and/or 'reading' the screen,
(2) to monitor or change certain system status codes, and (3) to store machine
language subroutines in upper memory for later access with a USR statement.

PEEKs and POKEs to the Screen: Locations 1536@ to 16383. Often you will be
able to determine that the address used in a PEEK or POKE falls within this
range, usually because either the address 1s a constant or the nearby program
lines set a variable within that range.

469 FOR I=1536@ TO 16383:POKE I,191:NEXT or something like

470 FOR I= TO 1§23:POKE 15368+I1,191:NEXT
Lines 460 and 47§ reveal the technique of POKEing to the Screen.

If you can make this determination:
For PEEKs: Remove the PEEK instruction and replace it with:

Z0G%=(address) : GOSUB 6500¢

Subroutine 650@@ returns the PEEKed value in variable ZIC%. The best way to
illustrate the manual conversion is with a few examples. M3-BASIC lines are on
the left and the required GW-BASIC substitutes are on the right.

M3-BASIC PEEKs GW-BASIC replacements
X=PEEK(1564%) Z0G%=15640:GOSUB 6509@: X=21C%
CLS:Y=PEEK(I+1¢):PRINT CLS:ZOG%=T+10:GOSUB 6500@: Y=Z1C%:PRINT
PRINT PEEK(1536@+64%L) Z0G%=1536Q+64*L:GOSUB 65@9¢: PRINT ZICZ

For POKEs: Remove the POKE instruction and replace it with:

Z0GZ=(address) : 2UC%=(value) :GOSUB 6582¢

M3-BASIC POKEs GW-BASIC replacements
POKE 1536@,191 7Z0GZ=15360: ZUC%Z=191:GOSUB 65820
CLS:POKE I[,V:PRINT'"-- CLS:Z0G%=1:ZUC%=V:GOSUB 65@2@: PRINT" -~

The GOSUBed rvoutines for PEEK and POKE to the screem are contained in
R65@0@3 .ASC and listed in Appendix G.

-B.1l-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 0,20L8795982,,:

PEEKs and POKEs to monitor/change system status: M3-BASIC uses some locations
in the mid to upper 16@P@'s to initialize, update, and monitor certain system
conditions. M3-BASIC allows programs to PEEK these locations to check status
and to POKE them to change status. One source of information about the RAM
location of these codes and what they control is the green and white reference
card which was once included with the purchase of a cassette based Mod III.
The following describes some of most often used locations and some of their
GW-BASIC solutions.

164909 - Caps Lock Switch: Prior to accepting keyboard input, a M3-BASIC
program could set this switch. POKEing a P allowed an upper and lower case
keyboard input, and POKEing a non-zero value forced all upper case. Programs

toggle this switch to save the user the trouble of pressing <SHIFT># (the Mod
IIT equivalent to the PC <CAPS> key) and to simplify program logic required to
test user responses. You may see lines such as these:

25¢@ POKE 164@9,1:INPUT"Type YES/NO and press <ENTERD'";AS$
2520 AS=LEFTS(AS,1):IF AS="Y" THEN

A better GW-BASIC response would be:

2509 INPUT"Type YES/NO and press <ENTER>";A$
2529 A$=LEFT$(A$)1):IF AS="Y" OR Asznyn THEN

16412 - Cursor blink switch: If the M3-BASIC program POKEs a non-zero value
here, the program is telling the system to stop blinking the cursor. At this
moment we are not aware of a GW-BASIC equivalent.

) M3-BASIC GW~-BASIC
Turn on: 3¢ POKE 16412,p normal
Turn off: 409 POKE 164121 n/a

16416, 16417 - Cursor address: If the M3-BASIC program contains a line like
this:

3456 X=(PEEK(16417)-6p)*256+PEEK(16416)

it is storing the cursor's M3-BASIC PRINT@ address in variable X. Replace
with:

3456 X=(CSRLIN-1)*64+P0OS(f)-1
so that your converted program will generate identical M3-BASIC PRINT@
addresses. Subroutine 65@3@ will then convert PRINT@X statements to the proper
GW-BASIC LOCATE coordinates.

16419 - Cursor character: If the M3-BASIC program contains a line like this:

75¢ POKE 16419,191

it 1is changing the cursor character to omne of the graphics characters.
GW-BASIC has a more limited ability to alter cursor character makeup. Although
our GW-BASIC manuals claim that various widths of cursors can be specified by
the "start" parameter of LOCATE, at the time of this writing we were unable to
change the Tandy 28@#@ cursor as described. Consult your GW-BASIC manual.

~B.2-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 & 201-879-5982

16424 - Maximum Lines/Page: If the M3-BASIC program contains this PEEK or POKE
it is setting or checking the maximum number of lines per page. It is
generally used at the beginning of a program which is printing reports on
special forms with less than 66 lines per page. A simple GW-BASIC approach is
to count the number of lines printed and LPRINT the necessary number of blank
lines instead of using LPRINT CHR$(12) to skip to the top of the next form.
Set a variable (MX) to the number of lines per page and add 1 to another
variable (LC) with each LPRINT (remember to account for heading lines). Then
substitute for each LPRINT CHR$(12) with a GOSUB to a routine such as:

65409 FOR I=1 T0 MX~-LC:LPRINT:NEXT:RETURN 'to move to top-of-form.

16425 - Lines printed plus one: If the M3-BASIC program is PEEKing this
location, it probably is doing so before or after an LPRINT to see if a
printed listing is nearing the bottom of the current page and needs to skipped
up to the top of the next page. For example:

60 IF PEEK(16425)>53 THEN LPRINT CHRS$(12)

You can substitute by using the same approach previously mentioned for address
16424, Record the number of lines printed with a variable (LC) and after each
LPRINT employ one of the following tests:

for standard paper (66 lines): 609 IF LC>54 THEN LPRINT CHR$(12)
for non-standard paper: 603 IF LC>## THEN GOSUB 65400
16548, 16549 - Mod III program's starting position: These two locations

contain the address of where a program begins LOADing into RAM. If a M3-BASIC
program POKEs these locations, it is probably raising these pointers so that
the next program(s) LOADed will have space reserved for a machine language
subroutine. You may be able to delete this line and reserve space by
requesting an extra file when entering BASIC. Then wuse the GW-BASIC
VARPTR(buffer#) and DEF SEG commands to access it.

16561, 16562 - Memory size address holders: If the program is POKEing values
into these locations, it is most likely lowering Mem Size to reserve space for
a machine language subroutine. Substitute the GW-BASIC CLEAR, ##### command.

16913 - Cassette Baud Rate: If the program 1s POKEing this location it 1is
changing the cassette baud rate. See ERROR 22 in Chapter 3 for assistance.
16916 =~ Screen Scroll Protect: [f the M3-BASIC program 1is POKEing this

location it 1is preventing cthe top few lines ($-7) from scrolling off the
display. Although there 1s no equivalent GW-BASIC instructiom, you can achileve
a similar result by deleting the POKE and inserting a line like the following
after the line which is causing the display to scroll:

{f#4## TF CSRLIN = 17 THEN:LOCATE R,1:
WHILE CSRLINKL7:PRINT STRINGS(8§,32):WEND:LOCATE R,1

where R equals the auwmber of the last line protected plus one.
16919 - Time/Date: If the M3-BASIC program is PEEKing or POKEiang this location

Lt Ls either accessing or settiag the system time and/or date. Substitute with e
DATES and TIMES.

-B.3-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-51982f

POKEs for storjing machine language Subroutines: If the M3-BASIC program 1is
POKEing several bytes of numeric data into contiguous memory locations, it is

probably storing a machine language subroutine for later access with a USR
_statement. The machine language subroutine must be rewritten in PC assembler;
.the DATA statements used to store the routine will need to be revised with the

decimal equivalents of the hex code generated by the recompilation; and the
DEF USR address must be revised with the proper segment offset.

-B.4-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Appendix C

This table

lists
equivalents (if any).

CMD" " REPLACEMENTS

several M3-BASIC CMD"

statements and
For additional information refer to the Mod I1III Disk

their GW-BASIC

System Owners Manual, the Mod III DISK BASIC reference card, and your GW-BASIC

manual .

M3-BASIC CMD" "

CMD"A" Returns to DOS, displays SYSTEM
"OPERATION ABORTED"
CMD"B",'"ON/OFF'" Enable or Disable n/a
BREAK key
cMb''e! Delete REM's and/or CV3 automatically deletes
spaces unnecessary spaces; use
option L to remove REM's
CMD"D: X" Displays directory FILES"X:"
(where X=0,1,2,3) (where X=A,B, or C)
CMDVE" Displays last DOS error PRINT ERR and refer
to Appendix E
CMD"0",#,array$(begin) Sort array$ n/al

Function

GW~BASIC equivalent

CMD"P'" etc. Returns printer status See Appendix D
CMD''R" Turns on clock display n/a
CcMD"s" Returns to TRSDOS SYSTEM
CMD"'R" Turns off clock display n/a
CMD"X'" Jetc. Xref program line numbers, n/a
variables, etc.
CMD''Z" "ON/OFF'" Turn on/off echo of n/a
display to printer.
lFor sorting just a few Litems a simple BASIC bubble sort wmay suffice. For

large arrays use a machlne language subroutine.

64993 '** Sample GW-BASIC bubble sort **
64991 '% Sorts elements in array 1Z$() - pass starting element
64992 '* in IB, no. of elements to sort in I[E. Destroys I1Z, I9
65009 19=1:WHILE 19:19=p:FOR I1Z=IB TO (IB+IE-2):

IF 12$(I1Z)>1z$(1z+1) THEN SWAP T12$(1Z),1z$(Iz+!):19=1
65¢1¢ NEXT IZ:WEND:RETURN

—C.1-

Educational Micro Systems Inc., P.O.-Box 471, Chester, N.J. 07930 e 201-8 79—5982

Appendix D ., OTHER CONVERSION CORSIDERATIORS: Subtle Differences

INPUT statement: GW-BASIC nulls the value of string and numeric variables used

in INPUT statements. In M3-BASIC, string or numeric variables used in INPUT
statements retaln their previous value unless some other value is entered by
the user. In the following short program, if the user presses <ENTER> in
response to line 2@, X will equal 35 with M3-BASIC but § with GW-BASIC.

18 X=35

2 INPUT"CHANGE";X

3¢ PRINT X

In sowme situations this difference between GW-BASIC and M3-BASIC can cause
serious problems. For example, suppose you wrote a M3-BASIC program to create
and update a random disk file containing the names and phone numbers for
members of a local club. Suppose that the coding below is your '"CHANGE ROUTINE"
and you have just GOSUBed 1it.

2999 REM ** CHANGE ROUTINE **%
3900 GOSUB 10900 "GO ACCEPT DISK RECORD NUMBER
3¢1¢ GOSUB 11¢¢¢ "GO GET DISK RECORD
3029 GOSUBR 1200¢ "GO UNLOAD BUFFER INTO BNS, BPS
3¢3¢ PRINT'CHANGE ROUTINE
To change a field, type the change and press <ENTER>.
To leave unchanged, just press <ENTER>."
3¢4¢ PRINT'Name is ''BN$" Type change '';:INPUT BNS
3¢5¢ PRINT'Phone # is ''BP$" Type change '';: INPUT BP$S
3¢6¢ GOSUB 130p¢ "GO RELOAD BUFFER
3¢7¢ GOSUB 14090 "GO PUT UPDATED RECORD
31¢¢ RETURN

This routine will not produce the desired results in GW-BASIC, because pressing
{ENTER> at line 3040 or 3058 will destroy the contents of the respective
field(s) on the disk record. INPUT statements should be examined to determine
whether successful Mod III results depended on retained value(s).

KEYBOARD TYPE-AHEAD: The PC has keyboard type-ahead, a feature which allows you
to load the keyboard input buffer even when your program isn't asking for a
response. Although this can be a helpful feature at times, it can be an
inconvenience at others. For example, suppose your program 1s displaying user
instructions and pauses between frames with 'INPUT'"Press <ENTER> to
continue';A$.' If the user pressed <ENTER> several times in succession before
this prompt, or experienced keyboard bounce after his last <ENTER>, the screen
will not pause between frames and as a result some of the instructions will be
missed.

Inserting a simple WHILE/WEND loop before the INPUT pause will clear the
buffer and eliminate the problem. For example:

300¢ WHILE INKEYS<O'"'":WEND:INPUT"Press <ENTER> to continue';AS

TIME DELAYS: FOR/NEXT loops are often used to pause program execution. Because
PCs execute much faster than the Mod III, you may find it necessary to increase
the FOR/NEXT limit. For example:

1¢ FOR I=1 TO 5@@:NEXT:RETURN 'Approx. one second delay on Mod III

1¢ FOR I=1 TO 2@@@:NEXT:RETURN 'Approx. one second delay on PC

-D.1-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 o 201-879-5982

PRINTER STATUS & TIME-OUT: M3-BASIC "hangs up" when trying to execute an LPRINT
if the printer is not ready. The only way to continue processing 1s to activate
the printer or press <BREAK>. On the PC's we tested, we found the following
when trying to execute an LPRINT:

1. Printer not attached: GW-BASIC responded with

"Device Timeout' (ERR = 24) after about 6 seconds.

2. Printer attached, but not on: program execution continues.

3. Printer attached, on, but not selected: Program hangs up.
Some experimentation is suggested for your particular PC and printer
combination. We found that an ON ERROR GOTO routine would only trap case number
one above. You may want to insert a prompt prior the the print routine like
this:

4999 WHILE INKEY$<>"'':WEND:INPUT'"Ready Printer and press <ENTER>";AS

4929 REM -- Report routine goes here

MEMORY SIZE: A 48K Mod III has about 38K of RAM available for program storage,
while a PC has only 25K available. Hence, a large M3-BASIC program that is
converted may not fit into GW-BASIC's storage area or may possibly run out of
memory on execution. To estimate the amount of memory the converted program
will require: LOAD and RUN the M3-BASIC program just long enough to execute
DIM's, load arrays, and initialize variables. Then press <{BREAK>, type 7MEM and
press <ENTER>. Subtract the number returned from 3828@ and add a rough estimate

for GW-BASIC space delimiters, etc. If the answer is close to 25000, the
program is probably too large, and you should review the GW-BASIC CHAIN and
MERGE commands and implement program segmentation. Note: Do not select menu
options J and K (insertion of down-arrows) when converting programs that will
requir: segmentation.

COMi-. IN PRINT STATEMENTS: With M3-BASIC, commas used in PRINT statements
causi. cursor "jumps'' to positions 16, 32, and 48. In GW-BASIC, commas cause

"jumps'' to positions 14, 28, 42, 56, and 7¢#. Thus, a statement such as:

PRINT W,X,Y,Z
must be changed to PRINT W;TAB(16)X;TAB(32)Y;TAB(48)2Z

FOR/NEXT LOOPS: In general, M3-BASIC and GW-BASIC execute FOR/NEXT loops 1n the
same manner. The two differ, however, in the fact that GW-BASIC does not allow
conditional NEXT statements (see ERROR 21 description) and M3-BASIC always
executes a FOR/NEXT loop at least once while GW-BASIC will bypass the loop if
the product of the initial value of the loop control variable and the step
increment 1s greater than the product of the final value of the loop control
variable and the step increment. For example:

S¢@ FOR I=1 TO 5 STEP -1
51¢ PRINT'"-1 is greater than -5, loop 1is bypassed by GW-BASIC"
524 NEXT

Note that the need for program modification 1s not always implicit in the FOR

statement. TIf one or more of the loop control values 1s a3 variable, as 1in the

following: :
44¢ FOR I=1 TO S STEP Z

you will uneed to review program logic and substitute values assigned duriag
execution to make thlis determination.

-D.2~ K

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879ﬂ5982”

Appendix E

M3~BASIC/GW-BASIC ERROR CODE XREF

This table describes error codes returned by M3-BASIC and GW-BASIC. While both
BASIC's assign error codes to ERR, M3-BASIC assigns a false code which must be
interpreted to determine the true error code and GW-BASIC assigns the true

code itself.

M3-BASIC
"false code'
ERR

[ecBRe A RN (S ER

19
12
14
16
18
29
22
24
26
28
3¢
32

34
36
38
40
42

Disk Errors:

109
192
194
196
198

114

122
124
126
128

132
134

M3-BASIC
"true code"
ERR/2+1

—
LS R e R o o & A T I N

—
b—s

[S S SO gy
NN BNy

18
19
28
21
22

51
52
53
54
55

58

62
63
64
65

67
68

]

[

It

+1
+1
+1
+1
+1

-1
-1
-1
-1

-1
-1

-E.1-

GW-BASIC
"true code”
ERR

O
N~ W0 00~ N

—
w

14

15
16
17

19
2¢
21

23

5¢

(2
1

i
£~

61
62
63
64

66
67

Description

NEXT without FOR
Syntax error

RETURN without GOSUB
Out of DATA

Illegal function call
Overflow

Out of memory
Undefined line
Subscript out of range
Redimensioned array
Division by zero
Illegal direct

Type mismatch

Out of string space
String too long

String formula too complex
Can't continue

No RESUME

RESUME without error
Unprintable error
Missing operand

M3=Bad file data
PC=Line buffer overflow

Field overflow
Internal error
Bad file number
File not found
Bad file mode

Device I/0 error

Disk full

Input past end
Bad record number
Bad file name

Direct state. in file
Too many files

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Appendix F M3-BASIC CHR$() and STRING$(,) CODES

M3-BASIC uses ASCII codes from # to 255 to display characters and special
symbols on the screen, to invoke video control functions and as "switches'" to
control the function of some ranges of codes that have more than one use.

ASCII CODES (32-127): These codes represent letters, numbers and commonly used
text symbols. For example, PRINT CHR$(65) displays an "A'" and PRINT CHR$(43)
displays a "+'" symbol. The majority of these codes produce the same result in
M3-BASIC and GW-BASIC. If a program line was flagged by ERROR 26 and it
contains only codes in this range you can ignore the flag.

ASCII CODEs (128-191): These codes display M3-BASIC block graphic characters.
They can be reviewed in the Mod III Operation and BASIC Reference Manual or
you can use this short routine to display them on the Mod III screen:
FOR I=128 TO 191:PRINT USING"### ";I;:PRINT CHRS$(I):NEXT

The GW-BASIC block graphic set is limited, but the codes 177, 178, 219, 220,
221, 222, 223, or 254 may provide worthy alternatives. For example, the
M3 -BASIC statements: -

PRINT CHR$(191) and PRINT STRINGS(64,191)
mav be replaced with GW-BASIC's:

PRINT CHR$(219) and PRINT STRINGS$(64,219)

ASCII CODEs (192-255): Each of these codes has two exclusive functions
controlled a by '"switch." The switch, normally off, may be turned on by
executing a PRINT CHRS$(2l) statement. Once set, it stays on until another
PRINT CHRS$(21) is executed.

When the switch is off, M3-BASIC treats the codes a$s space compression
characters and skips the cursor ''code less 192" spaces to the right. For
example, PRINT CHR$(195) skips the cursor 3 positions.

PRINT''SAMPLE"; :PRINT CHRS$(195);:PRINT'"SKIP"
or simply: PRINT' SAMPLE'CHR$ (195)" SKIP"
displays: "SAMPLE...SKIP" (ignore quotes & periods).

For 'small" skips, replace PRINT CHRS(X) by inserting a blank string with
the required number of spaces:

PRINT"SAMPLE"" "SKIP'", or PRINT"SAMPLE SKIp"

For "large' skips, replace PRINT CHRS(X) with:

PRINT SPACES$(X-192), or PRINT STRINGS(X-192,32).

When the switch 1is on, M3-BASIC uses these codes to display special
characters. These can be reviewed in the Mod 111 Operatlion and BASIC Reference
Manual or you can display them on the screen with:

PRINT CHRS$(21):FOR I=192 TO 255:PRINT USING ### ";I;:PRINT CHRS(I):NEXT
Nore that we activated the special character mode by turning the switch on
with PRINT CHR$(21).

Problems: If you know whether the PRINT CHR$(21) switch is on or off,
substItuting‘a GW-BASIC equivalent 1is rather easy. The only problem you may
encounter is determining the status of the switch. This will require review of
your program logic. Finally, remember to remove each PRINT CHRS$(2l) statement
from your program after making the changes.

-7, 1~

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879—5‘982“?;‘ |

ASCII CODEs ($#-31): Each code in this range serves two functions. When used in

POKE statements

’manuals).

M3-

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

PRINT

PRINT
PRINT
PRINT
PRINT
PRINT

PRINT

they display

special

characters

(refer to your M3-BASIC

The primary use of these codes, though, is to invoke certain video
- -control functions such as those described in the chart below.

BASIC

CHRS$ (8)
CHRS$(1¢)
CHRS$(13)
CHRS (14)
CHRS(15)
CHRS$(21)

CHR$(23)

CHRS$(26)
CHRS$(27)
CHRS(28)
CHRS(29)
CHRS (39)

CHRS$(31)

Function

Backspace cursor

Linefeed & Car.Rtn.
Linefeed & Car.Rtn.

Turn on cursor
Turn off cursor
Switches special/
compression char.
Shifts to 32 char.
mode (large size)
Downward line feed
Upward line feed
Homes cursor

Crsr. to beg'g of line
Clears to end of line

Clears to end of scrn

GW-BASIC equivalent.

LOCATE CSRLIN,POS(p)-1
Same
Same
LOCATE ,,1
LOCATE ,,p
remove after sub'ing for
PRINT CHR$(192-255) Stmts.
WIDTH 4@

LOCATE CSRLIN+1,POS(f)
LOCATE CSRLIN-1,P0OS(§)
LOCATE 1,1

LOCATE CSRLIN, 1

PRINT STRINGS (81~POS(f),32)

*
see below.

*
Replace with: WHILE CSRLINK17:PRINT STRINGS (81-P0OS($),32):WEND

You may want to make this a subroutine such as:

6540¢ WHILE CSRLINK17:PRINT STRING$(81-POS($),32):WEND:RETURN
and replace each occurrance of PRINT CHR$(31) with, in this case, GOSUB 6540@.

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 o 201-879-5982

-F.2-

Appendix G MISCELLANEOUS GW-~BASIC SUBROUTINES

The routines listed here are referred by other sections of this user manual |
and may be required in your coanverted program(s). They are provided in ASCII
format on the diskette containing the conversion program and may be MERGEd to
a converted program as required or entered via the keyboard. Since lines
containing REM statements are not referenced, they may be deleted to conserve
RAM.

These ''subprograms' use line numbers above 64994 and uncommon variable
names in an attempt to eliminate couflicts with your program. Nevertheless,
please review your program listings before using these routines. If line
numbers or variables require alteration, then the statements inserted by the
conversion program, which GOSUB these routines and use their variables, will
also need revision.

64995 hkkhkAkhAhRARAARAIKREAARANAAR AR R AL AR AL IR ATk b A hk kk
"# R65000.ASC Routines GOSUBed to replace screen *
'* peeks 'n pokes. *
64996 '* GOSUB 65000 for PEEKs. GOSUB 65020 for POKEs *
R R b R S TN A N RN
65000 ZOGZ=Z0G%Z~15360: ZAGZ=INT(Z0G%/64) : ZOGA=Z0G%~64L*ZAG%+]1:
ZAG%=ZAG%+1:ZIC%=SCREEN (ZAG¥%,ZOG%) :RETURN
65020 ZAPZ=CSRLIN:ZUPZ=P0OS(0):GOSUB 65000: LOCATE ZAG%, Z0G%:
PRINT CHRS(ZUCZ);:LOCATE ZAP%,ZUPZ%:RETURN
65027 AEEAEAREAIREASNFEENRAEIARARESARFEAA SR A RA AL AR SRR L AR
'* R65030.A8C -~ Calculates PRINT@s with variables.*
T E N L T L L LTy
65030 ZAGZ=INT(ZOG%/64): Z0G%=Z0G%~64*ZAGL+1: ZAGL=ZAG%+1:
LOCATE ZAGZ%,Z0GZ:RETURN
65005 ' FkkdhAhAr AR AR AEAAAEAETARAALRAREAARAERERAER SR LR LA TR
'* R65100.ASC ~ Randomize Seed: GOSUB near beginning
'%# of prog. or change line# and delete RETURN
£5006 EERAAAAAAKIAEAREA LI AR IR FRARLH AT AA R AT RS AEERAAE AR SR AT AR
65100 DEF FNSD(X)=VAL(MIDS(TIMES,X,2))*60~(5\(X+1)):
DEF FNSEED=(FNSD(1)+FNSD(4)+FNSD(7))*.7585157~32768! : RETURN
65145 ' EEAkRAARERAARARAERAREAE SR AR LRAR AR AN AIASEETAA LSS AR A AR LK
'* R65150.ASC Routine to display graphics characters *
"% available from CHRS$(169) thru CHRS$(254) *
§5146 " aEEEEEdkkdhok ok kAR R R AR R kAR R R AR AR ARk Ak ek
65150 CLS:LOCATE 4,10,0:FOR I=169 TO 254:
IF (I>170 AND I<174) OR (I>223 AND 1<240) OR (I>240 AND I<254)
THEN 65152 ELSE PRINT USING" ### ";I;:PRINT CHRS(I);:J=J+1
65152 IF J=5 THEN LOCATE CSRLIN+2,10:71=0
65154 NEXT:LOCATE ,,1:END
B 165 Ak Rk Aok ok ok ok ok ok ek Rk ok o o ke R Rk Rk
'* R65170.ASC Routine to draw double thinline *
'* border around PC screen. Revise to suit. *
65166 1Ak ko Aok A ek A ok A ok A AR ARk Ak A ek ok ok
65170 RWZ=CSRLIN:CLZ=P0S(0) 'Save cursor position
65175 LOCATE 1,1:PRINT CHR$(201)STRINGS(62,205)CHRS(187);
65176 FOR I=2 TO 15
65177 LOCATE I, 1:PRINT CHRS(186);:LOCATE I1,64:PRINT CHRS(186);
65178 NEXT
65179 LOCATE 16,1:PRINT CHRS$(200)STRINGS(62,205)CHRS(188);
65180 LOCATE RWZ,CLZ 'Reposition cursor to original
65181 RETURN
-G.1l- 4

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879~5982

Appendix H LINK3PC Program/File Transfer

This package includes a diskette labelled HYPERCROSS which contains programs
to transfer TRS-80 Mod 1/II1I programs and files to a PC. HXIII/CMD is for Mod
III owners, and HXI/CMD is for Mod I owners. The HYPERCROSS diskette is
distributed in TRSDOS 2.3 Mod I single density format. The procedure for
making working copies and using the programs varies slightly depending on your
hardware and DOS configuration.

Making a working copy: Boot your Mod I/III with a clean copy of your DOS 1in
drive @#. Supported DOS's include: TRSDOS 1.3, DosPlus 3.4 & 3.5, LDOS,
MultiDos, NewDos 8@ V2, TRSDOS 2.3, and TRSDOS 2.7.

1. Make a backup of your DOS system diskette.

Remove the original copy of DOS from drive @ and store away.

Place the new backup copy of DOS in drive §.

Place the HYPERCROSS diskette in drive 1.

Transfer HXIII/CMD and/or HXI/CMD to your DOS diskette in drive f.
Refer to your DOS manual for the required command. For example,
with a Mod IIT and TRSDOS 1.3 use CONVERT :1 :@, and
with a Mod I and TRSDOS 2.3 use COPY HXI/CMD:1 :¢.

6. After successfully transferring HXIII/CMD or HXI/CMD to your DOS

diskette, remove the HYPERCROSS disk from drive 1 and store away .

7. Backup the diskette in drive § for additional working copies.

oo wN

Running HXIII/CMD: Boot your Model I/III with a DOS diskette containing
HXI/CMD or HXIII/CMD in drive §.

1. Place the diskette containing the data file or ASCII program to be
transferred to the PC in drive 1 (see page 2.3).

2. Copy the file or program to drive §.

Type: COPY NAME:1 :§ and press <ENTER>

where NAME is the filename of the data file or ASCII program.
3. When COPY is finished, remove the diskette in drive 1 and store away .
4. Execute the HXIII or HXI program.

Mod IIT owners, type: BXIII and press <ENTERD.

Mod I owners, type: HXI and press <ENTERD.

5. When the "...Specify DOS type...'" prompt and DOS menu appears, type
the letter corresponding to your particular DOS.

6. When the function menu appears, type 4 and press <ENTER> to FORMAT an
MS-DOS diskette in drive 1.

7. Place a blank diskette in drive 1 and press <ENTERD.

8. When the '">>'" prompt appears, type: 2 and press <ENTER>. At the
"Filename:'" prompt, type: NAME and press <ENTER> where NAME is the
filename used in step 2. The transferred file 1is automatically
assigned the same NAME on the MS-DOS diskette. If the Mod I/III
NAME included an /EXTension, the '"/" is replaced with a ".'".

9. At the "ASCII or Image file transfer (A, I or R)?" prompt:

Type: A when transferring BASIC programs and ASCII data files.

Type: I when transferring random data files with 256 byte records.

Type: R### when transferring random data files containing records
of less than 256 bytes. Substitute the actual record length for
(e.g. to transfer a file of 64 byte records, type: R@64).

When the '>>" reappears, press <ENTER> to return to the function menu or type
5 and press <ENTER> to exit the program. Remove the diskettes and refer to
page 2.4.

-H.1-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

Appendix I IN CASE OF TROUBLE
I. Using HYPERCROSS.

PROBLEM 1: HYPERCROSS diskette appears defective. Errors result from trying to
load a program, and displaying a directory of the diskette is impossible.

Solution: The HYPERCROSS programs are supplied on a TRS-80 Mod I TRSDOS 2.3
data diskette. If you are not using a Mod I and TRSDOS 2.3, comsult your DOS
manual for the procedure for reading a TRSDOS 2.3 data diskette.

PROBLEM 2: One of the data files 1 want to transfer with HYPERCROSS is too
large to fit on a system disk in drive :0. How can I get it on a PC diskette?

Solutioun: You will need to segment the file into two or more manageable
pieces and use HYPERCROSS to transfer each piece. After transfer to the PC
merge the segments.

I1I. Using CNV3TOPC.BAS.

PROBLEM 1: CNV3TOPC aborts or prints several ''line too loung'" errors, or both.
Also, when trying to list the ASCII version of the Mod 1/I11 program with the
MS-DOS TYPE command, ''garbage" is displayed. A few reserved words (i.e. PRINT,
GOTO, etc.) are legible but they are incorrect.

Solution: The Mod I/II1 program was not saved properly im ASCII format.
Time and frustration can be avoided by making sure that a valid ASCII version
has been saved before attempting to transfer and convert. The "A" optiom 1is
required to SAVE an ASCII version of a program. The proper syntax is as
follows: SAVE"Program Name/Ext:0",A. Note that the SECOND PAIR OF QUOTES IS
MANDITORY and precedes the comma. Please follow the procedures described in the
user guide on page 2.3 and Appendix A.

-I.1-

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 o 201-879-5982

I1I. Using a conwerted PC program.

PROBLEM 1: After running a conversion with option "I" to completion, I can't
LOAD the converted PC version for manual cleanup. BASIC displays s "file not
found" error message.

Solution: Most likely when running CNV3TOPC you did not include an
extension as part of the name you assigned to the converted PC program.
GW-BASIC assumes the program named in the LOAD command has an extension of
".BAS" unless another extension is specified. To load a GW-BASIC program
lacking an extension include a period after the name (e.g. to load a program
called NAME, type LOAD"NAME."). Alternatively, you can use the MS-DOS REN
(Rename) command, assign a ".BAS' extension and then LOAD the program.

PROBLEM 2: The converted program aborts with an "ILLEGAL function call" in a
line containing an OPEN statement.

Solution: This problem is probably caused by the fact that some PC BASICs
allocate only 128 bytes for random file buffers unless the "/S'" option in used
when BASIC is loaded. To allocate additional buffer space type: BASIC /S:256.
BASICA users type: BASICA /S:256.

PROBLEM 3: The converted program aborts with "FIELD overflow im ..."

Solution: A FIELD statement is attempting to define a record larger than
the default or specified value in its related OPEN statement. Be sure that all
OPEN statements flagged during the conversion were revised according to
instructions on page 3.6 (see Random buffer size — default value).

PROBLEM 4: Reports generated by converted programs print only 80 columns of
information on a line and print the remainder on the next line.

Solution: Reports produced by GW-BASIC programs default to 80 columns
unless a greater width 1is specified with the WIDTH command. Insert the
following command somewhere near the beginning of the program:

WIDTH "LPT1:",255.

PROBLEM 5: Execution of a converted program aborts with a "Syntax error"
message.

Solution: It is possible that a line was not edited properly during manual
cleanup. Check the line closely to be sure you fixed errors flagged during the
conversion.

If the line appears correct, the coincidence of a Mod I/III variable name
being a GW-BASIC reserved word may have caused the trouble. Though Mod I/III
BASIC recognized the first two alphanumeric characters in variable names, more
could be wused for readability. For example, the variable KEY, which was
sometimes used as a pointer to random file records, is a GW-BASIC reserved word
that may only be used as specified in the GW-BASIC manual. Check variable names
in lines that otherwise appear to be correct. If by chance a variable begins
with a GW-BASIC keyword, you will need to replace each occurrence of that
variable in your program.

-1.2~

Educational Micro Systems Inc., P.O. Box 471, Chester, N.J. 07930 e 201-879-5982

